Лекция 5. Хранение данных smart‑систем: реляционные БД и time‑series
Цель лекции: понять, какие типы данных возникают в smart‑системах (телеметрия, события, конфигурации, цифровой двойник), какие хранилища подходят для разных задач, и как проектировать схему данных для надёжной аналитики и эксплуатации.
1. Какие данные есть в smart‑системах
Типичная платформа IoT/Smart‑системы хранит несколько классов данных:
• Телеметрия (time-series): значения датчиков во времени (температура, ток, вибрация, RTT и т.д.).
• События/алармы: дискретные факты (ALARM, WARNING, START/STOP, превышение порога).
• Конфигурации и паспорта устройств: модель, серийный номер, калибровки, привязка к цеху/линии.
• Состояние цифрового двойника: “текущее состояние” объекта (shadow), параметры режимов.
• Логи/трассировки: сервисные логи, ошибки, трассы запросов.
• Справочники: пользователи, роли, права, типы активов, нормативы.

Следствие: “одна база на всё” обычно неэффективна — нужен полиглот‑подход (несколько хранилищ).
2. Реляционные БД (SQL): где они сильны
Реляционные БД (PostgreSQL, MySQL, MS SQL и др.) отлично подходят для:
• транзакционных данных (ACID): регистрации устройств, пользователей, прав доступа;
• справочников и связей (device → line → workshop → plant);
• конфигураций и версионирования (калибровки, пороги, профили);
• сложных JOIN‑запросов и отчётности.

Плюсы SQL:
• строгая схема (constraints), целостность данных;
• мощный язык запросов (JOIN, агрегаты, окна);
• транзакции и блокировки — критично для учётных операций.

Минусы для телеметрии:
• очень большие потоки точек (миллионы/сек) быстро перегружают обычные таблицы;
• тяжёлые индексы и раздувание хранения при длинной истории;
• сложнее делать retention/компрессию без специальных расширений.
2.1 Рекомендуемые таблицы (минимальный набор)
В SQL обычно держат “управляющие” сущности:
• devices(device_id, type, serial, location_id, status, created_at)
• assets/lines/workshops/locations — иерархия предприятия
• users, roles, permissions (RBAC)
• thresholds/rules (пороговые значения, политики)
• events (дискретные события/алармы) — можно в SQL, если объём умеренный
3. Time‑series базы данных (TSDB): зачем они нужны
TSDB (InfluxDB, TimescaleDB, VictoriaMetrics, QuestDB и др.) оптимизированы под телеметрию:
• быстрые вставки (append‑only) больших потоков точек;
• хранение по времени, downsampling, retention policies;
• компрессия, агрегации по временным окнам;
• запросы “дай тренд за неделю”, “p95 за час”, “срез по тегам”.
3.1 Модель данных TSDB: measurement + tags + fields
Типовая идея (особенно в Influx‑подобных системах):
• Measurement — “тип измерения” (например, motor_telemetry)
• Tags — метаданные (device_id, line, domain, sensor_type) — индексируются
• Fields — значения (temp, vib, current, rtt) — обычно не индексируются
• Timestamp — ключ времени

Правило: часто фильтруем → делаем tag; часто агрегируем/рисуем → делаем field.
3.2 Retention и downsampling
Для промышленной эксплуатации важно управлять объёмом истории:
• Retention: хранить сырые данные 7–30 дней (или больше по требованиям)
• Downsampling: агрегировать (1s→1m→1h) и хранить агрегаты годами
• Компрессия: снижает стоимость хранения без потери полезности

Пример: raw (1 сек) = 14 дней, agg_1m = 6 месяцев, agg_1h = 3 года.
4. TimescaleDB как “гибрид”: SQL + time‑series
TimescaleDB — расширение PostgreSQL, которое добавляет time‑series возможности:
• hypertable (партиционирование по времени/ключу)
• continuous aggregates (материализованные агрегаты)
• политики retention/компрессии

Плюс: остаётся SQL и JOIN с таблицами устройств/справочников. Это удобный вариант, когда хочется “одну платформу”, но с time‑series оптимизациями.
5. Как выбрать хранилище: практическая матрица
Обычно выбор делают по 5 критериям:
1) Скорость записи (ingest rate)
2) Тип запросов (JOIN/отчётность vs окна по времени)
3) Длительность хранения и стоимость
4) Требования к целостности (ACID) и транзакциям
5) Интеграция с аналитикой и визуализацией

Рекомендация для smart‑систем:
• SQL: устройства/права/конфигурации/справочники/умеренные события
• TSDB: телеметрия высокой частоты + тренды
• Object storage (S3‑подобное): сырые файлы, большие датасеты, модели
• Search (Elasticsearch/OpenSearch): логи и полнотекстовый поиск (опционально)
6. Проектирование схемы данных (data modeling)
6.1 Идентификаторы и метаданные
Для связности системы нужны стабильные ключи:
• device_id (уникален во всей платформе)
• asset_id (станок/узел/объект)
• location_id (цех/линия)
• schema_version (версия формата телеметрии)

Метаданные (tags) должны позволять делать фильтры: “цех”, “линия”, “тип датчика”, “домен edge/cloud”.
6.2 Временные метки и синхронизация времени
Ошибки времени — частая причина “сломанных” графиков:
• хранить время в UTC;
• фиксировать источник timestamp (device_time vs gateway_time vs server_time);
• контролировать time skew и “скачки” времени (NTP/PTS);
• при необходимости хранить и device_time, и ingest_time.
6.3 Качество данных и “сырое vs очищенное”
Хорошая практика: разделять потоки:
• Raw: как пришло (для аудита и переобработки)
• Clean: после нормализации/валидации (для дашбордов и аналитики)
• Features: агрегаты/признаки для ML

Это помогает воспроизводимости и снижает ошибки при изменении правил нормализации.
7. Индексация и производительность
SQL:
• индексируйте поля, по которым фильтруете (device_id, created_at, status);
• избегайте чрезмерных индексов на “горячих” таблицах;
• используйте партиционирование для больших таблиц событий.

TSDB:
• аккуратно выбирайте tags (слишком много уникальных тегов → высокая кардинальность → нагрузка);
• храните поля как fields, а не как tags, если по ним редко фильтруете;
• используйте downsampling и retention как обязательную часть архитектуры.
8. Интеграция с визуализацией и аналитикой
• Grafana хорошо работает с TSDB (Influx/Timescale/VictoriaMetrics).
• BI‑отчётность и справочники чаще строятся от SQL.
• Для ML удобно иметь слой “features” (агрегаты по окнам, статистики), который можно формировать стрим‑процессингом (Kafka/Flink) или batch‑задачами.
9. Типовая архитектура хранения для производства
1) MQTT/Kafka принимает телеметрию.
2) Raw журнал (Kafka + долговременное хранилище или object storage) — для воспроизводимости.
3) TSDB хранит телеметрию и агрегаты (дашборды, тренды).
4) SQL хранит паспорт устройства, топологию предприятия, права, настройки, правила.
5) События/алармы: либо SQL (если умеренно), либо отдельный event‑store/стриминг + индекс.
6) Бэкапы, retention и мониторинг объёма — обязательны.
10. Итоги
• Реляционные БД (SQL) — лучшая база для справочников, прав, конфигураций и транзакций.
• TSDB — лучший выбор для телеметрии высокой частоты и запросов по временным окнам.
• Часто нужен гибрид: SQL + TSDB + (объектное хранилище для сырых данных).
• Критично: правильные timestamps, управление retention/downsampling, контроль кардинальности тегов.
• Хорошая модель данных обеспечивает воспроизводимость, отчётность и масштабируемость.
Самопроверка (7 вопросов)
• Какие типы данных smart‑системы лучше хранить в SQL, а какие — в TSDB?
• Почему обычная SQL‑таблица плохо масштабируется на телеметрию высокой частоты?
• Что такое “кардинальность тегов” и почему она опасна для TSDB?
• Как организовать retention и downsampling для 1‑сек телеметрии?
• Зачем хранить raw‑поток отдельно от clean‑данных?
• Почему важно различать device_time и ingest_time?
• Когда TimescaleDB удобнее, чем отдельная TSDB?
